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ABSTRACT

This thesis analyzes the dynamic stability of positively buoyant submersibles.  Six

degree-of-frcedom equations of motion are used to compute steady state behavior with

motion restricted to the vertical plane. Steady state solutions are analyzed for various

conditions of buoyancy including changes in (1) the amount of excess buoyancy, (2) the

location of the center of buoyancy, (3) the location of the center of gravity, as well as (4)

the deflection of bow and stern planes. The equations of motion are then linearized around

these steady state solutions to predict dynamic response in the vertical plane. The stability

of each solution is then determined by eigen value analysis. The study then expands the

analysis to include all six degrees of freedom (i.e., include stability analysis in the

horizontal plane). Finally, numerical intcgration methods are used to verify the results.
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I. INTRODUCTION

A. PROBLEM STATEMENT

Controlling emergency ascent situations on submersible vehicles such as dive plane
jam recovery is of concern to the U.S. Navy. In order to control such situations, one must
first be able to predict the dynamic response of positively buoyant submersibles.

Dynamic response equations of motion descibe the manuevering characteristics of
submersible vehicles for six degrees of freedom. These equations assume constant
coefficicents for hydrodynamic forces and moments approximated by zero frequency added
mass and damping terms plus the quadratic terms for drag forces. The constant coefficients
vary for each vehicle and are dependent on such things as vehicle body shape, location and
magnitude of vehicle weight, location and m.gnitude of vehicle buoyancy, position of bow
and stern planes, position of rudder, vehicle speed, vehicle mass characteristics, vehicle
hydrodynamic cocfficients, propeller rpm and control surface inputs. This thesis uscs the
equations of motion and hydrodynamic coefficients for a submerged Mark IX Swimmer
Delivery Vehicle (SDV) developed by Smith, Crane, and Summey [Reference 1:11-16,21-
31] to forecast the dynamic stability of a submersible in a positively buoyant condition.

This study begins by using the six equations of motion to compute the steady state
behavior of a submersible vehicle with motion restricted to the vertical plane. The steady
state solutions in the vertical plane are calculated for various conditions of buoyancy
including changes in the amount of cxcess buoyancy, the location of the center of
buoyancy. the location of the center of gravity, as well as the deflection of bow and stern
plancs. The SDV's cquations of motion are then lincarized around these steady state

solutions to predict dynamic response motion in the vertical plane for the various conditions




of buoyancy. Several solutions are computed and the stability of each solution is
determined by eigen value analysis. The thesis then expands the analysis to include all six
degrees of freedom (ie. include stability analysis in the horizontal plane). Finally,

numerical integration methods are used to verify the results.

B. EQUATIONS OF MOTION

The six degree of freedom equations of motion for the submersible vehicle shown in
Appendix A were taken from Smith, Crane, and Summey [Reference 1:11-16].
Difterentiation with respect to time is denoted by a dot over the variable; e.g. u = %‘:
These equations are referenced to a right-hand orthogonal axis system fixed in thc body
(vehicle) as shown in Figure 1. Since these equations are in reference to a body fixed axis
system, the Euler angles of pitch (8),roll (¢), and yaw (V) are used to specify orientation
with respect to the inertial reference system. The rotation sequence for 9, © and ¥, and the
Euler angle rates for ti), 6 and 1P shown in Appendix B were taken from: Smith, Crane, and
Summey [Reference 1:18-20]. Major variables and parameters as defined by Smith,
Crane, and Summey |Reference 1:7-10] are given below :

1. Dynamic Variables

u,v,w - Lincar velocity components of vehicle with respect to origin of

body axes system relative to fluid.

p-q.r - Angular velocity components of vehicle with respect to body
axcs system rclative to inertial reference system.

XY.Z - Hydrodynamic force components along body axes.

KM.N - Hydrodynamic moment components along body axcs.

(3]




2.

Mass Distribution Parameters

m -
W .
\Y .
B -
XeYoo -
*pYp‘B -
LT, .
Xy 'x7'yz )
3. Remaining
p -

Mass of the flooded vehicle, including the mass of the
entrained fluid.

Weight of the flooded vehicle, including the weight of the
entrained {luid ( = g m ; where g is the acceleration of gravity).

Displacement volume of the vehicle.

Buoyancy force acting on the vehicle (=p g V). This is
independent of the inertial mass distribution of the submersible
vehicle, including whether or not it is flooded.

Coordinates of the CG (center of gravity) in the body axis

system (Figure 1). These will depend on the mass
distribution of the vehicle, including the mass of the entrained
fluid.

Coordinates of the CB (center of buoyancy) in the body axis

system (Figure 1). These arc independent of the mass
distribution systcm, but may vary with the addition or removal
of external appendages.

Moments of incrtia about the body system axes, including the
entrained fluid.

Products of incrtia about the body system axes, including the
entrained fluid.

Parameters

Mass density of fluid medium

Reference length used to nondimensionalize the hydrodynamic
coefficients.




b(x), h(x) - Width and height of vehicle in its xy and xz planes,
respectively, at location x measured in the body axes system
(Figure 1). These quantities are required in the integrals
detining the crossflow forces and moments in the equations of

motion, and are tabulated within the Steady State Computer
Program (Appendix C).

X ose X tail - Sternplane, bowplane and rudder deflection angles in radians

(Figure 1).
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I1. SYSTEM SOLUTIONS IN THE VERTICAL PLANE

A. GENERAL

In the steady state condition, the submersible will have reached constant linear and
angular velocities. Therefore, the body fixed linear accelerations (u , v, w) and the body
fixed angular accelerations (p , q , r) will be zero. Similarly, the vehicle will have reached
a constant angle of pitch (8) making its derivatives (é) equal to zero. Since this analysis is
restricted to steady state solutions in the vertical plane, the angle of roll (¢) and its
derivative (@) will be zero (in Chapter 1V, the case where the angle of roll (¢) is 180
degrees will be discussed during the numerical integration analysis). The angle of yaw (¥)
and its derivative (‘i)) will likewise be zero due to the vertical plane restriction. It should be
noted that had this analysis not been restricted to the vertical planc, steady state yaw )
would not necessarily be zero, thereby allowing the angular velocities (p, q, r) to be non-
zero. However, since this analysis was restricted to the cases where ¢ 9 , v spqand r
are all zero, the equations of motion for six degrees of freedom for the steady state

condition can be reduced to:
*  Longitudinal (Surge) Equation of Motion:
(W-B)sin8 = Xyy v2 + Xyw w2 + X g, uvdp + uw | X, a5 05 + Xy gp Ob)
+ 02 Xogps 857+ Xopap b” + Xoror 07 + u2Xprop
. Lateral (Sway) Equation of Motion:

-(W-B)cos B sing=, Yy uv + Yyw vw + Y5 u2 6r}

Xnose . .
f - Cy b (v +Cpz blx) (WP ¥ dx
X{ail c




*  Normal (Heave) Equation of Motion

- (W-B)cos 8 cos @ = Zy, uw + Zyy v2 + u2(Zy 8s+Zg, Op)

Xpose . 2w
. C 2 _ W
- Dy h(X) (V) +CDZ b(X) (W) : ch(x) dx
Xtail
*  Roll Equation of Motion:
-(yg W-yBB)cos 8 cos ¢ + (2zgW - zgB) cos 0 sin ¢

= ,KV uv + KVW V\N; + U2 Kprop

. Pitch Equation of Motion:
(xg W-xB B)cos 8 cos ¢+ (2g W-zg B) sinf =
My uw + My v2 + u2 (Mg 85 + Mg, dp)

Xnose " .
+ Cpy h(x) (v}- +Cp, b(x) (W)2 W __x dx
0 * Ugqlx)
Xtail
*  Yaw Equation of Motion:
-(xg W-xBB)cos 8 sing+ (yg W-ygB) sinf =
‘ Nyuv + Nyw vw + Ny u2 6r} +u2 Noprop
Xnose .
- Cpy hix) (v)2 + Cp, b(x)(w)2 —¥. - xdx
Xeail - Uet(x)
tail
B. CONDITIONS
1. Defining Additional Terms
a. Excess Buoyancy, OB
Excess buoyancy is defined as 0B = B - W where B is the submersible's

total buoyancy and W is thc submersiblc's total weight.




b. Longitudunal Center of Buoyancy, xgp
The longitudinal center of buoyancy is defined as XGB = XG - Xg Where

Xg is the longitudinal center of gravity with respect to the body fixed axis and xpg is the
longitudinal center of buoyancy with respect to the body fixed axis.
c. Vertical Center of Buoyancy, ZG B
The vertical center of buoyancy is defined as ZGB =G - Zg Where 2 is
the longitudinal center of gravity with respect to the body fixed axis and zp is the

longitudinal center of buoyancy with respect to the body fixed axis (zGp 1s assumed to be

positive).
2. Assumed Conditions

a. Lateral Centers of Gravity, YG > and Buoyancy, yg

The lateral center of gravity and the center of buoyancy are assumed to be
on the same centerline plane (g =yg=0).
b. Propeller Speed,n (revolutions per minute)
The propeller speed is assumed to be zero (n = 0).
c. Propeller Coefficients, Ky, and Nyrop
From Smith, Crane, and Summey [Reference 1:30], the propeller

coefficients are zero (Kprop = Nprop = 0).

C. REVISING THE EQUATIONS OF MOTION
Using the term for vertical center of buoyancy (zgp), the expression (zgW - zgB)

may be written as (zgW - zBSB). Similarly, using the term for longitudinal center of
buoyancy (xGB) the expression (xGW - xBB) may be written as (xGBW - xBSB). Also,
the term u2Xprop may be written as:

U2Xprop u2CDo(112 IFUZCD4(ucommanded ] = CpoA2n? - Cpyou?

Uactual




where A is a constant.

Since the shaft speed (n) is zero, the expression may be further reduced to
szprop = - Cpou?. Substituting these expressions plus the term for excess buoyancy
(0B) and the assumed conditions revises the equations of motion for the six degree of

frecdom system as follows:
*  Longitudinal (Surge) Equation of Motion:
OBsinG = Xyy v2 + Xy W2 + X g uvdp + uw ( X, o 8 + Xy op Ob)
' 2 2 2)
+ 42 Xpyx 05+ Xgpoh Ob” + Xpray 0r) - Coo 2

. Lateral (Sway) Equation of Motion:

0B cos Bsing=_ Yy uv + Yy vW + Yg, u2 6r

Xnose 5 2y
- Cny h(x)ve +Cp, b{x)w dx
Xtail . Dy ( ) Dl b( ) ) Uci(x)

. Normal (Heave) Equation of Motion:

OB cos O cos = Zy uw + Zyy v2 + u2 (st Os+Z,, bb)_

Xnosc , :
1 Cpy h(x) v2 +Cp, bx) w2 U::(x) dx
Xtail

. Roll Equation of Motion:

(ZGBW - ZBGB) cos 8 sin 9= K, uv + Ky vw

*  Pitch Equation of Motion:

(XGB W - xB f)B) cos 0 cos ¢ + (ZGB W -zp bB) sin @ =
o+ M52+ 02V, 85+ My 8]
Xnose )

+ CDy h(x) +2 +Cp, b(x) w2 T W_ x dx
Xtail




. Yaw Equation of Motion:
("‘GB W + xB GB) cos O sin¢ = Ny uv + Nyw VW + Nbr u2 br:!

Xnose )
- Cpyh(x) v2 + Cp, bx) w2 ; J—x- x dx

Xtail
These six equations only have five unknowns: u,v,w.8, and ¢. Therefore, two of
these equations must be dependent and additional conditions are required in order to make

the number of cquations equal the number of unknowns.

D. ADDITIONAL CONDITIONS

The next condition to be applied to the vehicle is that the rudder will remain
centerlined, that is dr = 0. Since the solutions of interest are those in which the vehicle
remains within the vertical planc, it can be further specified that the linear velocity in the
transverse direction (v) equals zero. Recalling that the angle of roll (¢) has been previously
assumed o equal zcro, the trigonometric functions of ¢ can be identified as sin¢ equals zero
and cos9® cquals unity. Substituting these quantitics back into the equations of motion,
three of the six cquations of motion (sway, roll, and yaw) yicld trivial solutions. In
addition, the cross-flow velocity term (U ) for the heave and pitch equations can be
reduced to:

Uefx) = (v 4xrf + (w - xqP77 = w203 = w

since v, 1, and q are zero.  Furthermore, since Cpy, is constant, it can be taken outside the
integral. Therefore, the three remaining equations can be wriiten as:

*  Longitudinal (Surge) Equation of Motion:

Xuww w2+ uw ( X 85 + Xyt 90)

-0Bsin9 = , 2 ) ,
+ ““( Xosos O~ + Xgbob Ob )-Cm u’

10




*  Normal (Heave) Equation of Motion:

Xnose 2
OB COS 9 = ZW uw + U2 (ZOS 65+be éb) - CDZ b(x) w2 dx

Xtail
. Pitch Equation of Motion:

(XGBW‘XB OB)cos 0 + (ZGBW'ZB (‘)B) sin@ =

5 Xnose 3
M, uw + u< (Mbs o + My, bb)+ Cp, b{x) ‘lyw_{ x dx
Xtail

E. VERTICAL PLANE EQUATIONS OF MOTION

By defining the terms A, as the f

Xail

b(x) dx and x , as 'XLI b(x) x dx, the three

remaining equations defining motion in the vertical plane can be written as:
*  Longitudinal (Surge) Equation of Motion:
-0Bsin 8 = Xyw w2+ uw ( X500 + Xyop Ob)
# u2( Xpgps 05° + Xopoh 0b7) - Coo u?
*  Normal (Heave) Equation of Motion:

0B cos 8 = Zy uw +u2(Zy, 05+Zyy Op) - Cp,w Wl A,

. Pitch Equation of Motion:
(XGB W -xB GB) cos 0 + (ZGB W -zp bB) sin 6 =
M,, uw + u2 (Mbs s + Mgy, (’b)"' Cpz W IW| xaAAy,

F. COMPUTER PROGRAM DEVELOPMENT
Taking these three equations which describe motion in the vertical plane, solving the

first two for sinc O and cosine 0. respectively; and dividing all three through by u? yields:
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*  Longitudinal (Surf,c) Equation of Motion:
e _ 1 Xww (5P ()Xo 0 + Xygp 0b)

S 2 2
us B (szbs 5°+ Xho 0°) - Cou |
. Normal (Hcavc) Equation of Motion:
cosB = 17, % 1(Zy b5+Zgy, ) -C M A“
2 bB ( ds 9st48h b) Dz~ 02

e Pitch Equation of Motion:
(xgB W - xB oB) _CQSEB + (zgg W - ZB 5B) ,,S,i,nzﬁ =
u u
. g W W
MW \:j + (MOS bS + Mbb bb)+ CD[ “J[Z-“l xAAW
Now, defining the quantity ‘: as w', and substituting w' back into the three
equations:

if w is positive:

¢ Longitudinal (Surge) Equauon of Motion:

sinf __ 1 Xuow (W'}2+ (“; (was Os +2Xw6b f’b)
u?> B (szés 5™ + Xabob b }- Coo

. Normal (Heave) Equation of Motion:
C(Lsze ) aJB Zu (W) +(Zgg O5+Zgy, Bb) - CDz (W' Ax
*  Pitch Equation of Motion:
(xGB W - xp 0B) %58 + (.G W - zp 5B) $in8 -
u? u
My (w') + (Mg 8 + Mgy, )+ CDz (W' XaAw
however, if w is negative:

*  Longitudinal (Surgc) Equation ot Motion:

sing_ 1 Xww (WP (W) X585 + Xy o1 0b)
T 2 2
U2 OB ( XéSGS 65 + Xbbbb bb ) - CD()
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*  Normal (Heave) Equation of Motion:

€80 = 17, W)+ 2y, b6+Zgp 00) + P A

. Pitch Equation of Motion:
(xgB W -xB dB) 9"%9 + (ZGB W -zp 5B) §j.n2_9 _
u u

My (W) + (Myg 05 + Mgy 8b)- Cpgz (W'F xpA,

sin O

- .. sinf cos @ . . o
Substituting the equations for 2 and g2 mto the pitch equation yields the
following expressions:

if w is positive: ]
(XGBW XB ()B) Zw(w (st ds+Zg;, bb) -Cpy(w'F Ay

_ X d + Xooar O
'(ZGBW'ZBOB)'I ww Z(Xwés rwdb )

B (Xésbs 8%+ Xgpah 9b°) - Coo
My (W) + (Mg O +M6b dp) + CDz (W' P XaAw

and if w is negative: ,
(XGB W-xp oB) ()lB Ly (W) + (Z(‘)g ds+Zsy, 6b) + Cpz (w'f Av
Xww (W2 (W) X 0 + Xy, O
) (ZGB W-zp ()B) 1 fww ( 2)( wos Us ) wob h)
0B +(Xps05 05"+ Xobon 0b7) - Cou

My, (W) + (Mg 0 +Mbb db) - Cpyz (W'F XaA

Rearranging these two equations to get them into the form: A(w')? + B(w') + C = 0. the

expressions become:
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if w is positive:
- Cpyz xAAw +(zGBW zB GB) E wa |(
w
+(XGB W -xpB f)B) -Cpz Aw
My +(zGB W - zB ()B) 1 (xwf,S 5 + Xyyop Ob)

+ (w')
-(xgB W - XB 68) 1z, ‘
0B

'Y

(lGB W - B 0B —( X6§65 682 + Xébbb 6b2 - CD()) 0
+
(Mbs ds + Mgy, 0p) - (xGBw xg 0B) L = (2o 0s+Zgy, ab)

and if w is negative:
- Cpy xaAw + (zGB W - zg 0B) -1 - Xww |

l(w P
-(xgBW-xpB) &-Cp, A, |

My +(zGB W - zBas) (&N6568+Xw6bbb) )
+ (w

-(xGBW - xB 6B) ggzw |
(eGp W - zp 9B) 51"3’( Xasss Os” + Xonob 0 - Cou)

=0
(MbS ds + Mgy, dp)-(xGB W - xB aB) (Zo ds+Zgp, ab)

Thesc quadratic expressions were then solved using the equation:
Bx|B2- 4AC

W= e e

2A
where:
B =0B My, + (2GB W - 2B 0B) ( X, 55 9s + X5 Ob)

-(xgB W -xp 8B) Z,,
C= (eGB W - 2B 0B) { Xpps 052+ Xgpap Ob - Coo)
+ 0B My, 05+ Mg, 0p)-(xGB W - xB 0B) (Zy, ds+Zgy, Ob)

if w is positive:
A = 8B(CD, xaAy) + (2GB W - 23 0B)  Xyw + (xGB W - xB 0B) Cp, A,
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and if w is negative:
A =-0B(Cp, xaAw) + (ZGB W.-zp oB) Xww ‘(XGB W -xB OB) Cp: Av
The value of 6 was determined using the computed values of w' and the equation for

tangent 6:
sin O
u2
tan = -7 -
cos 8.
]
UI.

.cos 8 . . . .
However, the value of w2 varied depending on the value of w', which lead to two
possible solutions:

Equation for tan 0 if w' is Positive:
. ' 2 2
Ko (012 () X5 85 + Xyt 00) - X 057 + X 00+ Coo

tan 0 =
Zu (W) + + (Zgg 0s+Zyp Op) - CDy Adw'Jw'|
Equation for tan 6 if w' is Negative:
"2 ' - 2 2
g o~ X ()7 () [ X0 05 + X ) - Xpsos 05 + Xonap 7]+ Coo

Zyo (W) + + (Zyg 05+Zyp Bp) +Cpy Adw'Iw|
In either casce, the value of u? was computed using the expression derived from the

surge equation of motion:

ul = OB sin 6
5

- Xww (W'} -(w')( Xwos 9s + Xuob Ob) -( X 5505 652 + Xsbdb bbz + Cpo
This leads to two possible solutions for u (i.e. u == Vu2). The value of w was
computed using w = u (w'). Combining the two possible solutions of u with the two
possible values for w' derived from the quadratic expression lead to four possible
combinations of solutions for u and w. The computer program which calculates these four
possible solutions is contained in Appendix C. It is an interactive program designed to
allow the operate * to select the amount of excess buoyancy as a percentage of vehicle
weight (0B). the deflection of dive planes in degrees (0,). the ratio of bow planes to dive
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weight (0B), the deflection of dive planes in degrees (0g), the ratio of bow planes to dive
planes (0y/0y), the location of x;p and xp from body fixed axis origin as a percentage of

length, and the location of 25 and zg from body fixed axis origin in feet.

G. STEADY STATE RESULTS

Figures 2, 3, and 4 show typical steady state solutions for surge velocity, heave
velocity, and pitch angle as a [unction of dive plane angle. The two cases shown vary the
location of the longitudinal center of buoyancy; for case (a): x5p = -1 % of the vehicle
length (L). and for case (b): x;p=+1% L. The following parameters were the same for
both cases: excess buoyancy , 0B = 2 % of the vehicle weight (W); deflection of bow
planes, oy, = 0: location of horizontal and vertical centers of buoyancy, xg = zg = 0; and
location of vertical center of gravity, Zop = 0.1 feet.

All runs developed four solutions.  For two of the solutions, the magnitude of the
surge velocitities were large while the magnitudes of the associated heave velocities were
relatively small. This has been descibed by Booth [Ref 2: 297] as "predominantly forward
motion". The other two solutions had small surge velocity magnitudes and large heave
velocity magnitudes. Booth [Ref 3: 346] referred to this tvpe of motion as "nearly vertical
ascents”. The positive or negative nature of the velocitics are associated with the value of
pitch angle.  Positive heave velocities are associated with pitch angles greater than 90
degrees. That is the submersible would be ascending in a belly up orientation.  Although
this stcady state analysis computes four possible solutions, it gives no indication as to
which of the solutions are stable (if any). Dynamic response and stability criteria will be

discussed in the next chapter.
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Figure 2. Steady State Vertical Plane Solutions for Surge Velocity (u)
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III. DYNAMIC STABILITY

A. GENERAL

The first portion of this chapter uses the six degree of freedom equations of motion
along with the Euler angle rate equations for the derivatives of the angles of pitch and roll
(é and é) to predict the dynamic stability when movement is restricted o the vertical plane.
These equations of motion are then linearized around the vertical plane steady state nominal
points computed in chapter II. Eigen value analysis is then used to compute the stability of
each solution. The second part of the chapter expands this analysis to include all six
degrees of freedom and uses the same steady state nominal points to predict the dynamic

stability when motion is not restricted to the vertical plane.

B. RESTRICTING MOTION TO THE VERTICAL PLANE

Since motion is restricted to the vertical plane, the body-fixed transverse veloctiy (v)
and its derivative (v) are zero. The angles of roll (¢) and yaw (¥ ), and their derivatives (q;
and ‘i’) are also zero. We will continue to assume that the lateral center of gravity and the

lateral center of buoyancy arc on the same centerline plane (yg = yg = 0), and the rudder is

centerlined (0r =0).

C. LINEARIZED VERTICAL PLANE EQUATIONS OF MOTION
Substituting these values into the original equations of motion (Appendix A), yields

trivial results for three of the six equations: Lateral (sway), Roll, and Yaw. The remaining

equations reduce to the following form:




*  Longitudinal (Surge) Equation of Motion:
m-Xg U+ mzg q=| -Cpo+ Xoussds” +Xpoppdb° U2
+ Xy5s08 + Xyop0b UW + X 05 + Xogp0b] ug [ Xy, W2

wos

+ Xug-m wq+ Xgq+ mxg q2-(W-B)sin 6

. Normal (Heave) Equation of Motion:
m-Zg W m xg+Zg @ = Zo0s + Zy,0b u2
+ Zy uw + m ug+ mz; g2

-I Cpy, b(x)(w-xq)Z-: %C'X%l) dx+(W-B)cos 9
Ntail
. Pitch Equation of Motion:

mz i- Mg+mxg w4 - Mg g= Mygds + Mypdb u2e M, uw

Xpose

| - :’ T(wexq)
+ My-mxg ug- mzg wq - j Cp, b(x)(w-xq)*. Vo) * dx

xtail

-(xgW - xgB) cos 8 - (zgW - z3B)sin 0

These three equations which describe motion restricted to the vertical plane are functions of
four variables (u,w.q.0) plus their deriatives (4. w,q,0). The equations of motion and the

Eulcr angle rate equation for 8 were lincarized using the following generalized procedure:

Bu(i.l)u+1311(i,2)w+lazll(i,:s)q+Bn(i,4)é=ff(’,":i we Oy 0ol

e 5 - 8
u_l.l(l jdw..‘wu ! dq Qo Lae J‘Bo

where the B11(i)'s are the constants associated with the derivatives of the variables, the

functions f; represents the right hand side of the nonlincar equations, and i = 1 to 4
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identifics the three equations of motion (surge, heave, and yaw) plus the Euler angle rate

equation for 8. The partial derivatives were computed as follows:

. Partial Derivatives of the Longitudinal (Surge) EOM:

(:;ul = Z('CDO + Xosos552 +X6b6b6b2}u0 + (X 0505 + Xyo0blwo = A11(1,1)
33 = 2XWo + (Xyae08 + Xy60blug = A11(1,2)

‘Ll(; = (Xwq - MWo+ (Xqas0s + XgondbJug = A11(1,3)

O _ (W -B)cos 8o = Al1(1,4)
60

. Partial Derivatives of the Normal (Heave) EOM:

(:,:j = Lywo + 2 (stbs + behh)u(, = Al11(2,1)

of>
ow

= ugZy - 2Cp,Addwe = A11(2.2)

:‘; = ug(Zq + m) + 2Cp,AuxAwgl = A11(2,3)

M2 (W-B)sin 6, = Al1(2.4)
a9
Note on differentiation procedure: The cross-flow velocity term (U o) Was

reduced to Udx) = j(v +xr) +{w - )‘{q)z:o'5 = szjO'S =|w -q. Allowing




the integral term in the heave equation to be defined as I, where:

I = Cm[ b(x)(w-xq)w - xq dx
Xtail

XNGsC

= ?_CDZ[ b(x)(w-xq)sign (w - xq) dx = ZCDLI b(x) Iw - xq| dx

Xtal

al,
Hw - q)

Xnoese

d(W q) = 2CD7JV\ ()’f b(X) dx = 2CD2 |WU{ Ay

Xtail

al,

aw (d(W q) )(

inuse

d(w - q)) - 2Cpdwo I x b(x) dx = - 2Cp, [wo| xa Aw

Xtai

::I —( d(W q) )(

Partial Derivatives of the Pitch EOM:

‘;‘3 = 2(M,.0s + My dbJug + My wy = A11(3,1)
u
:i: = My uo +2u0Cp, AcX Awg = Al1(3.2)
af
(’n: = (Mg - mxgug {mzg)wg - 2Cp, Idwgl = A11(3,3)

M3 _ (xW - xgB) sinfy - (zGW - zsB) cos 8¢ = Al11(3.4)
a9

Note on difterentiation procedure: Again the cross-flow velocity term (U ) was

reduced to [w - gl. Allowing the integral term in the pitch equation to be defined
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as I,, where:

I, = Cp, I b(x)(w-xq)w - xq| x dx

al,

aw - q) = 2(?[){ml b(x) Iw - xg x dx

Xnose

;\12 {d(w g, )("(W q)) 2Cp vl J b(x) x dx = 2Cy, [Wol XA Ay

Xtail

Xpose

76[] _( 611 ) d(W -q)) _ . 2 -
S ( oo V| = 2Coivd] X203 dx = 2Crlwol I

Xtail

. Partial Derivatives of the Euler Angle Rate Equation for 9

ofy
=0 = All4.1
du .1
ofy
aw

=0 =Al1(4,.2

afy

= 1= All(43
b = 1= ALIEY)
o0 - AlI@49)
o0

The constants corresponding to the derivatives of the four variables (i.c. the left hand

side of the four equations) arc as follows:
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* Constants Associated with Derivatives for the Longitudinal
(Surge) EOM:

u = m-X;=B11(1,1)
q = mz;=BI11(1.3)
B11(1,2) = B11(1.4)=0
. Constants Associated with Derivatives for the Normal
(Heave) EOM:
w = m-Z;=B11(2,2)

q =-(mxg+Zg)= B11(2.3)

B11(2.1) = B11(2.4) = 0

e Constants Associated with Derivatives for the Pitch EOM:

u = mz; = B11(3,1)

W = -(M“', +m X(‘,) = Bl 1(3,2




q = I, -M;=BII(33)

B11(3,4)=0

* Constants Associated with Derivatives for the Euler Angle Rate
Equation for 6 :

8 = I=BlI(44)

Bli(4.1) = BI1(4,2) = B11(4,3) =0
These expressions can be arranged in a matrix format to form the linearized equations
of motion in the vertical plane about the nominal steady state points. The matrix format is

as follows:

BllxXI1=Allx Xl

where:
AL AII(12)  AIIL3)  Ali(1,4)
AL AIGDAN@Y) ANEY)  ANEY
T ALIGD)  AIIGB2)  AlIGB3) AlIGAY)
ALl D) AlI42)  AlI(43)  All(4.4)
BII(1.1)  BII(1,2)  BIlI(1,3)  BII(1.4)
. BUIGD  BLE2) BRI BIERY

Bl1(3,1)  BII(3,2 B11(3.3)  BIl1(3.4)
Bli(4.1)  Bl1(42)  BII(43)  BIl(4.4)




and

D. VERTICAL PLANE COMPUTER PROGRAM DEVELOPMENT

The matrix format of the lincarized equations of motion was used in the computer
program shown in Appendix D to predict the dynamic stability of the vehicle with motion
restricted to the vertical plane. The program is interactive in that it allows the operator to
select which of the four data files from the steady state analysis (Chapter II) will be used to
define the nominal points for the linearization process. An eigen system subroutine was
used to find cigen values and eigen vectors. The program's output was called the degree of
stability and only shows the largest real part of all eigen values. The stability criteria is

such that the degree of stability must be negative in order for the solution to be stable.

E. VERTICAL PLANE DYNAMIC RESULTS

Of the four possible steady state solutions computed in Chapter II, only one solution
from cach casc yiclded stable characteristics. There were some cases in which none of the
solutions were stable for certain ranges of parameters. The gencral trend of the lincarized

dynamic results arc fairly well demonstrated by the two cases discussed in Chapter IIL

Recalling the parameters of these cases: OB = 2%, ratio of bow to stern planes (9, /0,) = 0,

= 0.1 fect. and xg = 25 = 0. The first casc placed the longitudinal center of gravity aft

‘B B
of the longitudinal center of buoyancy (xgg = - 1 %), and the second case placed the
longitudinal center of gravity forward (x5g = + 1 %). Once again dive plane deflection
angle (0,) was varied from - 20 to + 20 degrees for both cases.  Figure 5 shows

longitudinal velocity (u) as a function of dive planc angle (d,). Case Onc (xgg=-1%)
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showed predominantly forward motion, while case two (x;p = - 1 %) yielded nearly

vertical ascents. Figure 6 shows vertical motion (w) as as a function of dive plane angle
(d,). The results concur with Figure 5, case one shows very little vertical motion while
case two demonstrates a larger value. It is interesting to note that vertical motion (w) for
case one is positive for dive plane angles between - 20 and -4 degrees. The case one values
of 6 shown in figure 7 for dive plane angles between - 20 and -4 degrees concur with this
observation. The values of 6 greater than 90 degrees indicate the submersible is ascending
in the belly up position. The stability in the vertical plane is shown in figure 8. Degree of

stability (e) is shown as a function of dive plane angle (8.). This figure shows both cases

to be stable in the vertical plane.
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F. LINEARIZATION OF FULL EQUATIONS OF MOTION

Referring back to the complete equations of motions shown in Appendix A, these six
equations which describe motion for the six degree of freedom system are functions of
eight variables (u.v,w,p.q.r,¢,8) plus their deriatives (u,v,w,p,q,r‘,é,é). The six
equations of motion (Appendix A) along with the Euler angle rates (Appendix B) were
linearized as folows:

blu + bj2v + bj3w + bj4p + bjSq + bj6i + bj7e + bj8e =
08 . %8, %, % p+ dﬁ q+1 gj I+, g1 o+ 28

= : ’ i | 8
U Ve, W 0P 0Qug 0Tk G0 J¢(, L9 g,

where the bj's are the constants associated with the derivatives of the variables, the

functions g, represents the right hand side of the nonlinear equations, and j =1 0 8
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identifies the six equations of motion plus the Euler angle rate equations for ¢ and 6,

respectively. The partial derivatives of these equations were computed as follows:

. Partial Derivatives of Longitudinal (Surge) EOM:
dagul =(was 0s + wah 6b)\'\’() +2(szbs 652 + Xbb@h ()bz)U() - 2C])0U() =all

0
gl — 2X“.“.W0 + (X

- ds + Xpp ObJug = al3

wos

0g

(_;'*q = -mwq + quW() + (qus 0s + qub 6b)U0 =als

081 =-(W-B)cos 8 =al8

a0
; ; ; € _ =
B _g=a12  Bo0=a14  Clog=at6 =0=al7
av ap dar a0

. Partial Derivatives of Lateral (Sway) EOM:

g
’.(;'V =Y\'u() + Yvww() - CDZA\\' [W()| =a22
dg2
ST Emwg + Yp Ug +prW() =a24
Jag

5r2 = -mug +Y; Up+ Yur Wo - CpzAwXxAwol= 226

%82 _ (W . B)cosd = a27

a9
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. . d >

92 _ 0= a2l %82 _ = a23 982 _ 0= 425 2 =0-a28
du aw d 00

Note on differentiation procedure: The cross-flow velocity term (U ) is given

Ucdx) = :(v +x1)2 + (w - xq)ZEO'S. The integral term in the sway equation

was defined as I.;, where:

(Xnose N
I; = - Cpy h(x) (v+xr)= +Cp, b{x)( (w-xq)2 . l‘j*;(xr dx
X{ail ¢
f Xnose v +xr
- I)[ ¥X1) dx
tha ( )( Uci(x))

Ut~ (v + x1) LU
ola [ ol } vaxry, 10 (vexr_ 2 C,,;_,, "oy
av  \av ( Ut )+ I av\ Ug ‘)_ Co. AWWO Uz f

= Cp,wo? wq A, = Cpzlwol Ay

W
dl3 _( ol ) (v +xr 9 v+ xr 1. Vef
o =lar Uor )+I o Ucf) Cp, Awwo? 5 % U - (v+xr) |
! | Ucf
= Cp, Awwo? -)EA‘\*ZQ = Cpy, Awxalwol
Wo*

al3 _( AL\ (v+xn)) ;9 [v+xn))_ o
aw | ow Uy owl Uy |~
dl; ( al \{ v + xr) v + Xr)
o o R e )
a9 dq Ucf dq Ucf




Partial Derivatives of Normal (Heave) EOM:

df: =Zwwo+2 (Z(,s 0s + Zgy, (‘)b)u() = a3l

dg“’ = Zw Ug - 2 CDz Ay |W0| =a33

ow
983 _ up + Zgug + 2 Cp; Ay xalwgl = a35

aq

983 __ (W -B)sin 8y =a38

a0

. agz
dé,‘; =0=a32 d’g"i:O:a}i dE% =0=12a36 T =0=a37
v dp ar a0

Note on differentiation procedure: The integral term in the heave equation

was defined as | 4 where:

Xnosc 5 5 W-XQ
I; = CDy h(x) (v+xr)= +Cp, b(x) (w-xq)- . dx

U
X{ail Cd )
Xnose
- [ (1)(“’ "q)d
Xtail Ueitx)
aly _ (W - xq) 176' ((\_v -xq))=I 1 (w xq)dUd
av av Ugr ovi Uy (U f).
=- Cp, Awwg? 1 woc—’pd=0 because "9-“:0
W()?‘ av av
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dl4 :{ )( w- 0 [W-Xxq
aw dw Ucf ) 1
=2Cp, Aw(w - xq)——x-(—l- +1 _12 | Ugs - (w- xq)ay-cf?

+CDlAww0 ~¥|w0l wo 0= 2CDZA\.AWO}
lw 0’ w2l Iw 0]4

because *dliv‘ = %—Ucf(x) = T(v +x1)2 + (W - xq)zj ' 2(w - Xq) =

=2 CDZ AWWO

Wi

674 ( ) \y,,xg 9 (w-xq xq) Co Auwi2-Lox Un - (w - xql Vet
; dq Ut Dz AwW0 Ugf‘»x of = (W - xq} or
= Cpy Awwg 23&'-‘-”“‘ = Cp; AwXxAwol
W()2
i _ g
ar
. Partial Derivatives of Roll EOM:
d,g4 = Ky up + Ky wo = a42
ov
df; = -mzgwo + Kp up + Kyp wo =244
d‘:’g: = mz«gug + Kr g + Kwr wg = a46
d—’g" = - ( ZG W - ZB B) COSB() = a47
a9
. : 0g4 -
984 _ 0= adl 984 _ 0= ad3 %84~ 0=ad5 oo =0=248
du ow aq 00
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Partial Derivatives of Pitch EOM:

985 - My wo +2(M,, 95 + My, dblug = a51
gg; =My u, +2Cp, AWXA!WO' = a53
=- MXgG Ug - Mz Wo + Mq uo -2Cp, IAJWUI =a55

98gs _ (xgW - xgB) sin 8¢ - (zgW - 23B) cos 8¢ = aS8

30
; - : g5 _ o _

985 _ (= as2 985 _ = a54 985 _ 0= as6 o =0=a57
v ap ar )

Note on differentiation procedure: The integral term in the pitch equation

was defined as IS, where:

(Xnosc . Tw-X
Is = Cpy h(x) (v+xr}2 +Cp, b{x) (w-xq)2 | = X9 x dx
] P - Uci(x)
tail
fXnose X Xnose
- (1) ‘l”j (’;q)) x dx= Iy xdx
) Xtail ct X1ail
al al
=g A= 2Cp Avxalwg
ols _ oLy xa = Cp, AwxaZwl = Cp; Iawgl
dq  dq ‘ '
s _oly | ols _ols  _
v v xa=0 ar or xa= 0
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Partial Derivatives of Yaw EOM:

%%{3 = NV ug + va wo - CDZ Aw XAIW()l = a62

c;g; = mxg wo + Np ug + Nyp wo = 264

ddgrg =- mxgUg + N;ug + Ny wo - Cp, Ia Wl = 266

%s _ (xg W - xg B) cosBg = a67

9

. - ag,

96 _ (- 461 986 _ 0= 263 986 _ - 265 =% =0=a68
du / d 09

Note on differentiation procedure: The integral term in the yaw equation

was defined as 16, where:

Xposc . |
Ie =] . CDy h(X)(V+xr)2 +Cp, b(x) (w-xq)c " ¥ +XI 4 dx

- Uef(x)
Xtail o
I Xnose ( y +xr) Xnose
- () Y-+XL) x dx = I; xdx
Uef(x

Xil efl* X1ail
dle _al3
6\[ - = 'av' XA = CDZ|WO|AWXA
ol; 9l
é}}, = a_r}“ xA = Cp; Auxa? [wgl = Cp, alwol
Ao _ oz _q dle oL _
ow  ow A dq dq A
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. Partial Derivatives of Euler Angle Rate for ¢ :

%7 2 1=a74
ap

987 _ tan B = a76

or
97 _ = a7l 987 _ = a72 %7 _ 0= a73
ou ov ow
o8 _ o %87 _0=a77 987 _ =478
2" =0=a75 . .
aq 09 fil)

. Partial Derivatives of Euler Angle Rate for 9 :

agx = l :386

a4

d,gsz():agl d,g8=0=882 g$8=0=383 d»g§=0=885
du ov ow aq

. oy ,

d%_z}{:():ag() -gh=0=387 (?;g6=02888

ar a¢ a0

The constants corresponding to the derivatives of the eight variablces (i.c. the left hand

side of the ecight equations) are as follows:
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Constants Associated with Derivatives for the Longitudinal
(Surge) EOM:

u = (m-Xu)=b11 q = (mz(,)=b15

b12=b13=b14=b16=bl7=b18=0

Constants Associated with Derivatives for the Lateral (Sway) EOM:
v = (m-Y,)=b22 p = (-mz;-Yp)=b24

I = (mxg-Y;)=b26
b21 =b23 =b25=b27=b28=0

Constants Associated with Derivatives for the Normal (Heave)
EOM:

w = (m-Z‘;.)=b33 q => (-mx(;-Zq)=b35

b31 = b32 = b34 = b36 = b37 = b38

Constants Associated with Derivatives for the Roll EOM:

v = (-mg;-K;)=b42 r = (-K;=bd6
p = (Ix-Ky)=b44

bd]l = b43 = b45 = b47 = b48

Constaats Associated with Derivatives for the Pitch EOM:

u = (mgg;)=bSi w = (-mxg-M;)=b53
q = (I;-My)=Db55

bS2 = b54 = b56 = b57 = b58

Constants Associated with Derivatives for the Yaw EOM:

v = (mxg-N;)=b62 p = (-Np)=bo4
i = (I,-N;)=b66

b61 = b63 = b65S = b67 = b68 = 0
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Constants Associated with Derivatives for the Euler Angle Rate
Equation for ¢ :
o = 1=b77

b71 =b72=b73=b74=b75=b76=b78=0

Constants Associated with the Derivatives for the Euler Angle
Rate Equation for 0 :

0 = 1=b88
b81 = b82 =b83 = b83 = b84 = b85 = b86 = b87 =0
These expressions can be arranged in a matrix format to define the dynamic equations
of motion for the six degree of freedom system linearized about the nominal steady state

points. The matrix formatis B x X =A x X, where:

all al2 al3 al4 al5 al6 al7 al8
a2l a22 a23 a24 a25 a26 a27 a2
a3l a32 a33 a34 a35 a36 a37 a38
A = adl ad42 a4l a44 a4S ad6 a47 a48
aS1 aS2 aS3 a54 aS5 a56 aS7 aS8
abl a62 a63 ab64 ab5 ab6 a67 a68
a7l a72 a73 a74 a75 a76 a77 al8
a8l a82 a83 a84 a85 a86 a87 a8S
all 0 al3 0 al5 0 0 al8
0 a22 0 a24 0 a26 a27 0
a3l 0 a33 0 a35 o0 0 a38
0 ad42 0 a44 O ad6 ad47 a0
) aSt 0 a53 0 a55 0 0 aS8
0 a2 0 a64 0 a66 a67 0
0 0 0 1 0 a7 0 0
o 0 0 0 1 o 0 0
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bl
b21
b31
b4l
b5l
b61
b71
b81

and

b12
b22
b32
b42
b52
b62
b72
b82

bl3
b23
b33
b43
b53

b63
b73
b83

bl4 blS bl6 bl7
b24 b25 b26 b27
b34 b35 b36 b37
b44 b4S b46 b47
b54 bS5 b56 bs7
b64 b6S b66 b67
b74 b75 b76 b77
b84 b85S b86 b87
0 0 blsS 0
0 b24 0 b26
b33 0 b35S O
0 b44 0 bd6
bS3 0 bS5 O
0 b64 0O b66
o 0 0 0
o 0 o0 0
Txl v
x2 v
| x3 W
. x4 ‘_ p
x5 | g
(i) ; ro
EANES
;"x8‘; ;)
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b38
b48
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b68
b78

b88
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These matrices may be reordered such that they will be of the form:

|

L X2 .

‘BIl 0, X1
xoE |
0 B2 y,. . 0 A2!

TA1l 0 " X1

X

This is accomplished by rewriting the X matrix such that X1 is the same matix used

in the vertical planc analysis:

x0T u”
X3E ! W
x5:i q 5

x- B0 X
x4, p L X2
x7j ¢
x2 Vv
X6 _ r_

The A matrix is restructured into a matrix containing four 4 x 4 matrices with

the A12 and A21 matrices containing only the zero clement.

all al3 al5 al8 0O 0 0 0

a3l a33 a35 a38 0 0 0 0

aS1 a53 aS5 aS8 O 0 0 0
A< 0 0 1 0O 0 o0 0 o0 _CAlL 0
0 0 0 0 a44 ad7 ad2 a6 . 0 A22.

0O 0 0 1 0 0 a7

0 0 a24 a27 a22 a26

0 0 0 0 a64 a67 a62 ab6 _
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Similarly, B is restructured into a matrix containing four 4 x 4 matrices with

the B12 and B21 matrices containing only the zero element.

b1t 0 b15 0 O O 0 O
0 b3 B35 0 0 0 0 o0 |
b51 53 55 0 0 0 0 O ;
B - 6 o6 o0 1 O 0 0 o0 _"B11 0
0 0 0 0 b3 0 bd2 bs6 - 0 B22
6o 0o o0 o0 0 1 0 o0
0 o0 0 b24 0 b22 b26
0 0 0 0 b64 0 b62 b66 _
As discussed, the X1 matrix established to descibe the linearized dynamic stabilty in the

vertical planeis the same as the X1 matrix within X. In addition, the A11 and B11

matrices from the vertical plane analysis are also identical to those in X . That is:

ALI(LD) ALI(L2) ALI(L3) AlL(I4) 0 7 add ad7 ad2 ad6

A“; Al1(2,1) AIlL(2,2) Al1(2,3) Al1(2,4) : 1 0 0 a7 :
CALIGD) ALIG2) ANIG3) AlLIG4) | a24 227 a22 a26
CALI@AD) ALI(42) ALI(43) AlI(44) | | a64 267 a62 a66

BII(1,1) BII(1,2) BlI(1,3) BII(1,4) T [ bdd 0 b42 b6 ~

5., BlII@D BIIQ2) BI@3) BII@R4) '=J 0 1 0 0

BII(31) BII(32) BII(33) BII(34) | : b24 0 b2 b26 |
CBI1(41) Bl1(42) B11(43) BI1(44) |  b64 0 b62 b66 .

The A22. B22, and X2 matrices represent the additional equations necessary to describe

the linearized motion for all six degrees of freedom: henceforth referred to as the horizontal
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plane contributions. The eigen function for the six degree of freedom model is computed

by taking the determinant as follows:

Al1-2Bl1I 0 | ; N :
det =0 =(det'A11-2B11 ) (det A22-2B22 )= 0
: 0 A22-2B22 .

Since the eigen function will be the product of these two determinants, the
resulting eigen values will merely be the union of the vertical plane eigen values and the
horizontal plane cigen values. The significance of reducing the eigen value calculation from
an 8 by 8 matrix problem to two 4 by 4 matrix problems is not in the computation time

saved. But rather in fact that now the horizontal and vertical stabilitics have been separated

and identified.

G. COMPUTER PROGRAM DEVELOPMENT

The matrix format of the lincarized dynamic response equations associated with
motion in the horizontal plane was added to the computer program developed previously
(Appendix D). Once again, the program is interactive in that it allows the opcrator to select
which of the four data files from the steady state analysis (Chapter IT) will be used to
define the nominal points for the lincarization process. An eigen system subroutine was
used to find eigen values and eigen vectors.  Two outputs were added to the program.
First, the degree of stability in the horizontal planc, and next the degree of stability of both
plancs (i.e., the union of the vertical and horizontal degrees of stability). Reminder:

degree of stability must be negative in order for the solution to be stabie.

H. DYNAMIC STABILITY SOLUTIONS

Continuing with the same cases from part E, the horizontal stability for the two casces

are shown in figure 9. Case two (xgg = + 1 %) is stable in the horizontal planc for all
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values of dive plane angle (05). Whereas, casc one (xg = - 1 %) is unstable in the
horizontal plane for dive plane angle (05) between -20 and - 9 degrees. From figure 7, this
corresponds to values of 6 greater than 140 degrecs. This indicates that the vehicle is
stable (even in the horizontal planc) for values of 8 greater than 90 degrees. A submersible
with an angle of pitch greater than 90 degrees will have a negative metacentric height and
will therefore be statically unstable. However, the results shown in figures 7 and 9 indicate
that the vehicle will remain dynamically stable is such a condition. This 'inverted
pendulum'’ type stability will be further investigated during the numerical integration
analysis (Chapter IV) to sec if hydrodynamic and drag forces on the vehicle can actually
cause this to occur. Figure 10 shows the combined stabilities for the horizontal and vertical
planes. It should be noted that in general the horizontal plane dictated stabilty for the cases

considered.
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Because the real part of the computed eigen values must be negative in order for a
solution to be stable, it is easy to identify unstable solutions. However, the measure of
stability for a stable solution is harder to quantify. The magnitudes shown thus far for
degree of stability seem very small. Does this mean that the solutions are not very stable?
In an attempt to answer this question, the values for degree of stability for a neutrally
buoyant submersible (0B = 0 or W = B) were computed. Figure 11 shows the degree of
stability in (a) the horizontal plane and (b) the vertical plane as a function of surge velocity.
This figure shows that the magnitude of the values for degree of stability for this neutrally
buoyant case are indeed of the same order of magnitude as the positively buoyant cases

discussed earlier.
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Figure 11. Degree of Stability as a Function of Surge Velocity (u) for a

Neutrally Buoyant Submersible
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I1V. SIMULATIONS AND DISCUSSION OF RESULTS

A. DYNAMIC STABILITY ANALYSIS RESULTS

The dynamic stability analysis included in this Chapter considers stability for both
planes (i.c. the analysis no longer breaks stability down by horizontal or vertical plane).
As mentioned in Chapter 111, horizontal plane stability generally dictates the stability of the
vehicle.

1. Variations in Longitudinal Center of Gravity (xGB)

Figures 12 through 15 show how changing the longitudinal center of gravity

(xgp) effects the dynamic response of the submersible. For these cases, the amount of
excess buoyancy (dB) is two percent of wieght (W), the bow plane deflection angle (9,) is
zero, the vertical center of gravity (z;5) is 0.1 feet, and the longitudinal and vertical centers
of buoyancy (xg and zp) are zero. The longitudinal center of gravity (xp) is varied from
- 210 + 2 percent of vehicle length. When the longitudinal center of gravity (x;p) is greater
than zero, there are stable solutions for the full range of dive plane angles. However, this
is not true when the longitudinal center of gravity (X5p) is less than zero. The range of

stable solutions is restricted when Xop= - 0.5 and - 1.0.
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Figure 12. Stable Surge Velocity (u) Solutions for Variations in Xxgp
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2. Variations in the Amount of Excess Buoyancy (8B)
Figures 16 through 19 show how changing the amount of excess buoyancy

(6B) effects the dynamic response of the submersible. For these cases, the bow plane

deflection angle (Sb) is zero, the longitudinal center of gravity (xGB) is - 0.5 percent of
vehicle length, the vertical center of gravity (z5p) is 0.1 feet, and the longitudinal and
vertical centers of buoyancy (xg and zy) are zero. The amount of excess buoyancy (0B) is
varied from 0.5 to 2.9 percent of weight (W). The only case where there are stable

solutions for the full range of dive plane angles is when buoyancy (6B) is 0.5.
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3. \Variations in Vertical Center of Gravity (zGB)

Figures 20 through 23 show how changing the vertical center of gravity (zgp)
effects the dynamic response of the submersible. For these cases, the amount of excess
buoyancy (0B) is two percent of weight (W), the bow plane deflection angle (d,) is zero,
the longitudinal center of gravity (xgg) is - 0.5 percent of vehicle length, and the
Jongitudinal and vertical centers of buoyancy (xg and zp) are zero. The vertical center of
gravity (z5p) is varied from 0.05 to 0.30 feet. The general trend shown in these figures is

that the larger values for vertical center of gravity (zgp) have stable solutions over a larger

range of dive plane angles.

5.5~ \ -

delta s

Figure 20. Stable Surge Velocity (u) Solutions for Variations in Zcp
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Figure 21. Stable Heave Velocity (w) Solutions for Variations in z.g
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Figure 22. Stable Angle of Pitch (8) Solutions for Variations in Z:p
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Figure 23. Degree of Stability for Variations in z.,

4. \Variations in the Longitudinal Center of Buoyancv (xj)

Figures 24 through 27 show how changing the longitudinal center of buoyancy
(xp) effects the dynamic response of the submersible. For these cases. the amount of
excess buoyancy (0B) is two percent of weight (W), the bow plane deflection angle (9,,) is
zero. the longitudinal center of gravity (xgg) is - 0.5 percent of vehicle length, the vertical
center of gravity (zgg) i 0.1 feet. and the vertical center of buoyancy (zp) is zero. The
longitudinal center of buoyancy (xp} is varied from - 9 to + 2 percent of vehicle length.
The general trend shown in these figures is that the positive values for longitudinal center
of buovancy (xB) tend to have stable solutions for positive dive plane angles. On the other

hand. the negative values for longitudinal center of buoyancy (xp) tend 1o have stable

soiutions for negative dive plane angles.
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5. Variations in Bow Planes Deflection Angle (éb)

Figures 28 through 31 show how a non-zero bow planes deflection angle (bb)
effects the dynamic response of the submersible. For these cases, the amount of excess
buoyancy (9B) is two percent of wieght (W), the longitudinal center of gravity (xg) is
- 0.5 percent of vehicle length, the vertical center of gravity (ZGB) is 0.1 feet, and the
longitudinal and vertical centers of buoyancy (xg and zp) are zero. The bow planes are

given a detlection of - 20 degrees. The significance of the results shown in these figures is

that for certain dive plane angles (8 = -3 to0 -12 degrees) there are two stable solutions.
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B. SIMULATIONS USING NUMERICAL INTEGRATION METHODS
The lincarized dvnamic response results were verified by simulations using numerical
integration of the full six degrees of freedom equations of motion for the swimmer delivery
vehicle (SDV). Figure 32 shows a plot of angle of pitch (8) versus time for the center of
gravity forward of the center of buoyancy case (x;g = + 1) with a dive plane angle (b,) of
- 15 degrees. The dotted line shows the linearized results from figure 7, the sold line
shows the numerical integration results. The steady state results of the numerical

integration method match the linearized dvnamic results exactly.
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Figure 32. Numerical Integration Solution for Angle of Pitch (8) when

Center of Gravity is Forward (x,, =+ 1%)

Frgure 23 shows a plot of angle of pitch (8) versus time tor the center of gravity aft
of the center ot buoyancy case (Xgg = - 1) with a dive plane angle (d) of - 15 degrees.
Agan the dotted line shows the linearized results from tigure 7, the solid line shows the
numerical integration results. And once again. the steady state results of the numerical
integration method mateh the lincarized dyvnamic results exactly. However. this linearized
dvnamic result was for the vertical plane only, the horizontal plane stability analysis
indicated that this would be an unstable solution (figure 9).  The reason for this
disagrecment in the results is investigated by adding an initial angle of roll to the numerical
integrauon analysis. Adding a small angle of initial roll (g, = 1 degree) caused the vehicle
to steady out at 137 degrees vice 139 degrees as shown in figure 34. This initial roll angle
also caused a steady state roll angle ot 17 degrees as shown in figure 330 In turn, this

steady state roll anele caused the steady state vaw velocity () shown in figure 36 (i.c.
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motion is no longer restricted to the vertical plane). Figure 37 shows a plot of z versus x
and indicates that the vehicle is taking a helical ascent as dicussed by Booth [Ref 2: 304-
305]. Therefore. the numerical integration solution resulting in a steady state pitch angle of
159 degrees (figure 33) is unstable in the horizontal plane as predicied by the linearized

dvnamic response analysis.
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Some question still remains with regards to the measure of stabilty of the 'inverted
pendulum’ solutions predicted by both the lincarized dynamic response analysis and the
numerical integration analysis. The linearized dynamic response analysis predicts a stable
solution for the casc when center of gravity is placed aft of center of buoyancy
(xgg = - 1 %) and the dive planc angle (9,) is - 7 degrees (figure 10). The corresponding
steady state value for pitch angle was 118 degrees (figure 7). A random persistent roll
disturbance (¢,) was added to the numerical integration model and the results are shown in
figure 38. The solid linc indicates the results when a small disturbance is added (94

centered about 0.1 degrees), the dashed line indicates the results when a large disturbance

is added (¢ J centered about 1.0 degrees). As expected, the large disturbance caused the
vehicie to roll over as shown by the resulting angles of roll (¢) in figure 39. However, the

vehicle continued to remain stable during small constant random disturbances in the
inverted position as shown by the resulting angles of roll (¢) in figure 40. This indicates

that indeed these 'inverted pendulum’ solutions have a significant measure of statility.
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VI. CONCLUSIONS AND RECOMMENDATIONS.

The steady state analysis resulted in four possible solutions provided that vehicle
motion was restricted to the vertical plane. Analyzing the dynamic stability using the
steady state results as nominal points generally indicates that only one (if any) of the
four possible solutions will be stable. There are a few cases where two solutions are
stable, but these cases (certain non-zero bow plane deflection angles) appear to be the
exception and not the rule.

The dynamic stability characteristics of submersibles can be separated with respect to
vertical plane motions (u,w,q,0) and horizontal plane motions (v,p,1,¢).

It is possible for submersibles to be dynamically stable with respect to vertical plane
motion in the inverted (belly up) position during ascents (Inverted Pendulum'
stabilization).

'Inverted Pendulum’ stabilization is also possible in the horizontal planc.

Submersibles are able to maintain this inverted orientation (i.e. ascend belly up

without rolling over) even under some persistent roll excitation.

As a recommendation, the dynamic stability analysis should be expanded to include
the case where angle of roll is 180 degrees, and the case where angle of roll is non-
zero (i.e. ¢ neither equals zero nor 180 degrees). Analyzing the ¢ =180 degrees cases
will only involve changing a few signs with regards to trigonometric functions;
however. analyzing the non-zero cases will require significant effort.

Furthermore. identifying and characterizing different stability regions over a range of

variations of the system parameters should be the matter of future research.
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APPENDIX A

SIX DEGREE OF FREEDOM EQUATIONS OF MOTION

Source: Smith, Crane, and Summey [Reference 1:11-16]

1. LONGITUDINAL (SURGE) EQUATION OF MOTION

m_u-vr+wq-xg(q2+T2)+)'G(Pij)+ZG(Pr+C.I)/=
Xpp P2 + Xqq % + Xrr 12+ Xpy pr

+ Xy u+ XwqWq + Xyp vp + Xyr Vr

+ uq [ Xgas ds + Xqdb Ob) + Xror urdy

+ Xew V2 4 Xow W2 + Xugr uvdy + uw | Xwas 0s + Xwdb Ob)
+ u2 [ Xosds 052 + Xopdb 002 + Xorar 0r2) - (W - BJ sin 0

S N
+ u- >\prnp

2. LATERAL (SWAY) EQUATION OF MOTION
m v +ur-wp+ xg(pq+f)-y(3(p2 +r2)+zg(qr - p)=
Ypp+ Yr 1+ Ypqpq+ Yqr qr
+ Yy v+ Ypup+ Yy our+ Yyqvq+ Ywp Wp + Yy Wr
+ Yyuv+ Yyw vw + Yo ul érk

Tnose N v w2 2 (v+xr) o
- Cpy h(x}{v+xr)= +Cpz b(x) (W-xq)~ U rix dx
X1ail Cﬁx)

+ (W-B) cos 8 sing




3.

4.

NORMAL (HEAVE) EQUATION OF MOTION

m w-uq+vp+xG (pr- a4 +yglar+ p)-zg (p? + @)
Zqq+ Zpp p* + Zpr pr + Zyy 17

+ \Zw W+ unq + va Vp + Zvr vr ]

+ Zy uw + Zyy V2 + u? (Zgs Os+Zab Op)

Xnose . .
- Cpy h(x) (v+xr)2 +Cpz b(x) (w-xq)2 (w-xq) dx
Xtail * Uex)

+ (W-B) cos 8 cos ¢

ROLL EQUATION OF MOTION

Ix p+(Iz -y} qr + Ixy (pr - ) - 1y (q2 - r2)

-Ixz{pg +1)+m yG (W-ugq+vp)-2zG (v +ur-wp) =
Kpp +Kr 1+ Kpqpq + Kgr qr
+ Kyv + Kpup + Kr ur + qu vq + Kwp Wp + Kwr wr
+ Ky uv + Kyw vw_ + (yg W - yg B) cos 6 cos ¢
- {zgW - zgB)cos B sin ¢ + u Koprop
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§. PITCH EQUATION OF MOTION
lyq+ (Ix - ly) pr - Ixy (qr + p) + lyz (pq - 1)
+Ixz(p2-13)-m xg (W-uq+vp)-2zG (U -vr+wp) =
:qu + Mpp p* + Mpr pr + My rzz
+ Myw + Mg uq + Myp vp + My vr |
+ My uw + Myy v2 + u2(Mgs s + Mgp Op)

Xnose + (wW-xq)
+f ‘ CDy h(x) (v+xr):2 +CpDz b(x) (w-xq)2 I TS x dx

_ cfix)
Xtail

-(xg W-xgB)cosBcoso- (2gW-2zgB) sin6

6. YAW EQUATION OF MOTION
Izr+(ly - Ix) pq - Ixy (Pz - qz) -lyz (pr + q)
+Ixz{qr-p)-m xg (V+ur-wp)-yg (0 -vr+wgq) =
Npp+Nrr1 + Npqpgq+ Ngr qrj
+ Nyv + Npup+ Npur+ Nvq vq +Nwp wp + Ny wr

, , 28
+ Ny uv + Nyw vw + Ngp u- o

*nose C ' > 7 " (V+xr)
- Dy h(x) (v+xr)= + Cpz b{x} (w-xq)~ T x dx
Xtail cft¥]

+{xGg W-xgB)cos 0 sing+ (ygW-ygB) sin 6 + u Nprop
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APPENDIX B

ROTATION SEQUENCE AND EULER ANGLE RATES

1. ROTATION SEQUENCE FOR ¢, 8 AND ¥
Smith. Crane, and Summey [Reference 1:8] descibe the transition from body fixed to
inertial reference frames as follows:
Since the equations of motion are referred to an axis system that is fixed for the
SDV (swimmer delivery vehiclc), and thus translates and rotates with it, the

orientation and position of the moving body axis system relative to a fixed inertial
reference system must be specified. The orientation of the body axis system with

respect 1o the inertial reference system is defined by the standard Euler angles ¥
(yaw), 6 (pitch), and ¢ (roll). The rotation sequence from the inertial reference

system to the body system is ¥ ,0 , and ¢ as shown in Figure Bl taken from Smith,
Crane. and Summey [Reference 1:18].

2. EULER ANGLE RATES FOR 9,0 AND ¥
The Euler angle rates used along with the six equations of motion (Appendix A) in
order to completely determine the motion of the submersible were specified by Smith,
Crane. and Summey [Reference 1:20] 1o be:
¢ = p+qsin¢tan6 +rcos ¢ptan 6
9 = qcos ¢ - rsin¢
Sing  cosQ

g o= g tne, e
cos 0 cos 6
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(1) vehicle-Centered
Gravity=-Directed System
paralliel to inertial

axis system,

(3) Roll-Resoived Flight
Reference System derived
from X'"'Y"'Z'" by rotation
about Y' through piten

angle 9.

Figure B1.

(2) Horizontal Flight
Reference System derived

from XgYgZo by rotation a-
bout 7 through yaw angle .

(x*)
(4) vehicle Body Axis Ref-

erence System derived from
X'Y'Z2Z' by rotation about X

through roll angle ¢.

Unit Sphere Development of Euler Angles
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APPENDIX C

STEADY STATE COMPUTER PROGRAM

PROGRAM STEADY
STEADY STATE SOLUTIONS IN THE VERTICAL PLANE

DIVE

REAL
REAL
REAL
REAL
REAL
REAL
REAL

PLANE VARIATION

L,MASS,IX,1Y,12,IX2,1IYZ2,IXY,LAMBDA )
KPDOT, KRDOT,KPQ,KQR,KVDOT,KP, KR, KVQ, KWP, KWR, KV
KVW, KPN,KDB

MQDOT, MPP,MPR,MRR, MWDOT,MQ, MVP, MVR, MW, MVV, MDS
MDB ,NDRB
NPDOT,NRDOT,NPQ,NQR,NVDOT,NP,NR,NVQ,NWP,NWR, NV
NVW, NDRS

DIMENSION X(9),BR(9),HH(9),VEC1(9)

GEOMETRIC PROPERTIES AND HYDRODYNAMIC COEFFICIENTS

PI

WEIGH
L
RHO
G
CDO
MASS
CcDhz
XWW
XWDS
XWDB

=4 . 0*ATAN(1.0)
T=12000.0
17.425

1.94
32.2

0.0057
=WEIGHT/G
=0.5*0.5*%RHO

= 1.710E-01*0.5%¥RHO*L**2
= 4,600E-02*0.5%RHO*L**2
= 9.660E-03*0.5*RHO*L**2

XDSDS =-1.160E-02*0.5*RHO*XL**2
XDBDB =-8.070E-03*0.5*RHO*L**2

CDO
W

ZDS
ZDB
MW

MDS
MDB

= CDO*0.S5*RHOXL**2
=-3,.020E-01*0,.5*RHO*XL**2
=-2,270E-02*0,5*RHO*L**2
=-2,270E-02*%0.5*RHO*L**2
= 9,860E-02*0.5*RHO*L**3
=-1,113E-02%0,5*RHO*L**3
= 1.113E-02*%0.5*%RHO*L**3

OPEN(21,NAME='ST1.RES’,STATUS='NEW')
OPEN(22,NAME='ST2.RES’ ,STATUS="NEW')

OPEN

(23,NAME='ST3.RES’' ,STATUS='NEW')

OPEN(24,NAME='ST4.RES' ,STATUS='NEW')
OPEN(31,NAME='COEF.DAT'’,STATUS="NEW')
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ann

DEFINE THE LENGTH X, BREADTH BR, AND HEIGHT HH TERMS

-105.9/12.0
-99.3/12.0
-87.3/12.0
-66.3/12.0

72.7/12.0

.2/12.
91.2/12.
99.2/12.

103.2/12.

— o~~~ o~ —
W0 ~JO Ut (WD
e - S e e

00 n oo
o]
w

0.00/12.
8.24/12.
19.76/12.
29.36/12.
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21.44/12.
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0.00/12.

WmWwm MMM

o
00

o
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A AGAEARRAGAEPAY
O~ W
— e e e e

w w
o o
COO0OCOODO0OO0D OO0

HHw wunnnna
w
-

w
o)
Vel

COMPUTE AREA AND CENTRO1D

CALL TRAP(9,BR,X,AREA)
DO 9 I=1,9
VEC1(I)=X(I)*BR(I)
CONTINUE

CALL TRAP(9,VEC1,X,XAA)
XA=XAA/AREA

WRITE (*,1002)

READ (*,*) DSMIND,DSMAXD, IDS
DSMIN=DSMIND*PI/180
DSMAX=DSMAXD*PI /180

WRITE (*,1001)

READ (*,*) RATIO
WRITE (*,1003)
READ (*,*) DELB

DELB=DELB*WEIGHT/100.0
WRITE (*,1004)

READ (*,*) XGB
XGB=XGB*L/100.0

WRITE (*,1005)

READ (*,*) Z2GB
WRITE (*,1006)
READ (*,*) XB

XB=XB*L/100.0

WRITE (*,1007)

READ (*,*) ZB

WRITE (31,*) RATIO, DELB, XGB, =GB, XB, ZB
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DO 1 1=1,IDS

DS=DSMIN+(DSMAX-DSMIN)*(I-1)/(IDS-1)
IF (DELB.EQ.0.0) DELB=0.000001
IF (ZGB.EQ.0.0) 2GB =0.000001

DB=RATIO*DS
PX =XGB*WEIGHT-XB*DELB
P2 =ZGB*WEIGHT-ZB*DELB

DEN =CDZ*AREA* (PX+XA*DELB)

LAMBDA=MW*DELB-PX*ZW+PZ* (XWDS+RATIO*XWDB) *DS

ALPHA =-PX*(ZDS+RATIO*ZDB)*DS-PZ*CDO+PZ*(XDSDS+
RATIO*RATIO*XDBDB)*DS**2+DELB* (MDS+RATIO

*MDB ) *DS
BETA =PZ*XWW
LAMBDA=LAMBDA/DEN

ALPHA =ALPHA /DEN
BETA =BETA /DEN

A = 1.0+BETA

B = LAMBDA

C = ALPHA

DET= B**2-4, 0%A*C

IF (DET.LT.0.0) GO TO 2

WP=(-B+SQRT(DET))/(2.0*A)

YY=-XWW*WP**2_( XWDS*DS+XWDB*DB ) *WP
- (XDSDS*DS**2+XDBDB*DB**2)+CD0

IF (WP.CE.0.0) XX=ZW*WP+ZDS*DS+ZDB*DB-CDZ*AREA
*WP*ABS(WP)

IF (WP.LT.0.0) XX=ZW*WP+ZDS*DS+ZDB*DB+CDZ*AREA
*WP*ABS (WP)

THETA=ATAN2(YY,XX)

USQ=DELB*SIN(THETA)/YY

THETA=THETA*180/P1

DSD=DS*180/PI

IF (USQ.LT.0.0) GO TO 3

IF (WP.GE.0.0) U= SQRT(USQ)

IF (WP.LT.0.0) U=-SQRT(USQ)

W=WP*U

WRITE (21,*) DSD,THETA,U,W,WP

WP=(-B-SQRT(DET))/(2.0*A)

YY=-XWW*WP**2— ( XWDS*DS+XWDB*DB ) *WP
—(XDSDS*DS**2+XDBDR*DB**2)+CD0

IF (WP.GE.0.0) XX=2W*WP+2ZDS*DS+ZDB*DB-CDZ*AREA
*WP*ABS (WP)

IF (WP.LT.0.0) XX=2ZW*WP+ZDS*DS+ZDB*DB+CDZ*AREA
*WP*ABS (WP)

THETA=ATAN2(YY, XX)

USQ=DELB*SIN(THETA)/YY
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DSD=DS*180/P1
THETA=THETA*180/P1

IF (USQ.LT.0.0) GO TO 2

IF (WP.LT.0.0) U==SQRT(USQ)
IF (WP.GE.0.0) U= SQRT(USQ)
WeWP*U

WRITE (22,*) DSD,THBETA,U, W, WP

2 A = -1,0+BETA

DET= B**2-4 . 0*A*(C

IF (DET.LT.0.0) GO TO 1

WP=(-B+SQRT(DET))/(2.0%A)

YYm-XWW*WP**2— ( XWDS*DS+XWDB*DB ) *WP

& - (XDSDS*DS**2+XDBDB*DB**2)+CD0

IF (WP.LT.0.0) XX=ZW*WP+ZDS*DS+ZDB*DB-CDZ*AREA
*WP*ABS (WP)

IF (WP.GE.0.0) XXmZW*WP+ZDS*DS+2DB*DB+CDZ*AREA
*WP*ABS (WP)

THETA=ATAN2(YY,XX)

USQ=DELB*SIN(TEETA)/YY

DSD=DS*180/P1I

THETA=THETA*180/PI

IF (USQ.LT.0.0) GO TO 4

IF (WP.GE.0.0) U=-SQRT(USQ)

IF (WP.LT.0.0) U= SQRT(USQ)

W=WP*U

WRITE (23,*) DSD,THETA,U,W,WP

4 WP=(~-B-SQRT(DET) })/(2.0*a)
VYY=-XWW*WP** 2~ ( XWDS*DS+XWDB*DB ) *WP
& —~(XDSDS*DS**2+XDBDB*DBR**2)+CDO

IF (WP.LT.0.0) XX=ZW*WP+ZDS*DS+ZDB*DB-CDZ*AREA
*WP*ABS (WP)

IF (WP.GE.0.0) XX=2W*WP+2DS*DS+ZDB*DB+CDZ*AREA
*WP*ABS (WP)

THETA=ATAN2(YY, XX)

USQ=DELB*SIN(THETA)/YY

DSD=DS*180/P1

THETA=THETA*180/PI

IF (USQ.LT.0.0) GO TO 1

IF (WP.GE.0.0) U=-SQRT(USQ)

IF (WP.LT.0.0) U= SQRT(USQ)

W=WP*U

WRITE (24,*) DSD,THETA,U,W,WP

1 CONTINUE

STOP
1001 FORMAT (' ENTER BOW PLANE TO DIVE PLANE RATIC’)
1002 FORMAT ( ENTER MIN, MAX, AND INCREMENTS IN
& DS (degrees)’)
1003 FORMAT ENTER DELB (%W)')
1004 FORMAT ENTER XGB (%L)')

- =

p— —
- -
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1005 FORMAT (' ENTER 2GB (feet)’)

1006 FORMAT (' ENTER XB (%L)’)

1007 FORMAT (’ ENTER ZB (feet)')
END

SUBROUTINE TRAP(N,A,B,OUT)

NUMERICAL INTEGRATION ROUTINE USING
THE TRAPEZOIDAL RULE

DIMENSION A(1),B(1)

Nl=N-1

OoUT=0.0

DO l I‘llNl
OUT1=0.5*(A(I)+A(I+1))*(B(I+1)-B(I))
OUT =0UT+OUT1

1 CONTINUE
RETURN
END
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APPENDIX D

LINEARIZED DYNAMIC STABILITY COMPUTER PROGRAM

PROGRAM LINEARIZED DYNAMIC STABILITY
10 20 30 40 50

C2345678901234567890123456789012345678901234567890123456

C

[sXeKe]

(s Ea Ke!

Lol oo oI - o]

IMPLICIT DOUBLE PRECISION (A-H,0-2)
DOUBLE PRECISION L,MASS,IA,IX,IY,I2
DOUBLE PRECISION KPDOT,KRDOT,KPQ,KQR,RVDOT,KP, KR,

KVQ, KWP, KWR, KV,
KVW, KPN,KDB,MQDOT, MPP, MPR, MRR, MWDOT, MQ,MVP, MVR,
MW,MVV,MDS,MDB,
NDRE,NPDOT,NRDOT, NPQ,NQR,NVDOT,NP,NR,NVQ, NWP, NWR,
NV,NVW,NDRS
DIMENSION Al(4,4),B1(4,4),BETA1(4),ALFR1(4),ALFI1(4)
DIMENSION BB1(4,4),BB2(4,4),2221(4,4),2222(4,4)
DIMENSION A2(4,4),B2(4,4),BETA2(4),ALFR2(4),ALFI2(4)
DIMENSION WR1(4),WR2(4),WIl(4),WI2(4)
DIMENSION X(9),BR(9),VEC1(9),VEC2(9)
GEOMETRIC PROPERTIES
PI = 4 .DO*DATAN(1.D0)

WEIGHT= 12000.0
IX = 1760.0

1Y = 9450.0

12 =10700.0

L = 17.425

RHO = 1.94

G = 32.2

CDO = 0.0057

MASS = WEIGHT/G

€Dz = 0.5%0.5*RHO

CDo = CDO*0.5*RHO*L**2
SURGE HYDRODYNAMIC COEFFICIENTS
XPP = 7.030E-03*0.5*RHO*L**4
XQQ =-1.470E-02*0.5*RHO*L**4
XRR = 4.010E-03*0.5*RHO*L**{
XPR = 7.640E-04*0.5*RHO*L**4
XUDOT =-7.580E-03*0.5*RHO*L**3
XWQ =-1.920E-01*0.5*RHO*L**3




0onon

[oEeNe]

aO00n

XVP
XVE
XQDS
XQDB
XRDR
Xvv
XWwW
XVDR
XWDS
XWDB
XDSDS
XDEDB
XDRDR
XRES

=-3.240E-03*0.5*RHO*L**3
= 1.B90E-02*0.5*RHO*L**3
= 2.610E-02*0.5*RHO*L**3
=-2.600E-03*%0.5*RHO*L**3
-8.180E-04*0.5*RHO*L**3

5.290E~-02*0.5*RHO*L**2
= 1.710E-01%0.5*%RHO*L**2
= 1.730E-03%0.5%RHO*L**2
= 4.600E-02*0 . 5*RHO*L**2
= 9.660E-03*%0.5%RHO*L**2
=-1.160E-02*0.5%RHO*L**2
=-8.070E-03*0.5*RHO*L**2
=-1.010E-02*0.5%RHO*L**2
= CDO*0.5%RHO*L**2

SWAY HYDRODYNAMIC COEFFICIENTS

YPDOT
YRDOT
YPQ
YOR
YVDOT
YP

YR
YVQ
YWP
YWR
YV
YVW
YDRS
YDRB

HEAVE

ZQDOT
ZPP
ZPR
ZRR
ZWDOT
2Q
ZVP
ZVR
W
vV
ZDS
ZDB

= 1.270E-04*0.5*RHO*L**{
= 1.240E-03*%0.5*RHO*L**4
= 4.125E-03*0.5*RHO*L**4
=-6.510E-03*0.5%RHO*L**4
=~-5.550E-02*0.5*RHO*L**3
= 3,055E-03*0.5%RHO*L**3
= 2.970E-02*0.5*RHO*L**3
= 2.360E-02*0.5*RHO*L**3
= 2.350E-01*0.5%RHO*L**3
=-1.880E-02*%0.5%RHO*L**3
=-9,310E-02*0.5*RHO*L**2
= 6.840E~02*0.5*RHO*L**2
=+2.270E~-02*0.5*RAO*L**2
=+2.270E-02*0.5%RHO*L**2

HYDRODYNAMIC COEFFICIENTS

=-6
= 1.
= 6.
=-7
=-2
=-1
=-4
= 4.
=-3.
=-6.
=-2.
=-2.

.810E-03*0.
.S*RHO*L**4
670E-03*0.
.350E-03*0.
.430E-01*0.
.350E-01*0.
.810E-02*0.
S550E-02*C.
020E-01*0.
840E-02*0.
270E-02*0.
270E-02*0.

270E-04*0

S*RHO*L**¢4

5*RHO*L**{
S*RHO*L**4
S*RHO*L**3
S*RHO*L**3
S*RHO*L**3
S*RHO*L**3
S*RHO*L**2
S*RHO*L**2
S*RHO*L**2
S*RHO*L**Q

ROLL HYDRODYNAMIC COEFFICIENTS

KPDOT =-1.010E-03*0.5*%RHO*L**5
=-3.370E-05*0.5*RHO*L**5
=-6.930E-05*0.5*RHO*L**%

KRDOT
KPQ
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o NoNp]

NNo

nno

KQR
KVDOT
KP

KR
KvQ
KWPp
KWR
KV
KVW

PITCH

MQDOT
MPP
MPR
MRR
MWDOT
MQ
MVP
MVR
MW
MVV
MDS
MDB

1.
1.
-1.
=-8.
=-5.
=-1.

= 1.

680E-02*0.
270E-04*0.
100E-02*0.
410E-04*0.
115E-03+*0.
270E-04*0.
390E-02*0.

S*RHO*L**5
S*RHO*L**4
5*RHO*L**{4
5*RHO*L**4
5*RHO*L**¢4
5*xRHO*L**4
S*RHO*L**4

= 3,055E-03%0.5%*RHO*L**3
=-1.870E-01*0.5*RHO*L**3

HYDRODYNAMIC COEFFICIENT

=-1.680E-02*0.5*RHO*L**5
= 5.260E-05*0.5*RHO*L**5
= 5.040E-03*0.5*RHO*L**5

=-2.
=6,
=—6.
= 1.
=1
= 9.
=-2.
=-1.
= 1,

860E-03*0.
810E-02+0.
860E-02*0.
180E-03*0.

.730E-02%0.

860E-02*0.
510E-02*0.
113e-02*0.
113e-02*0.

5*RHO*L**5
S*RHO*L**{4
5*RHO*L**4
S*RHO*L**4
5*RHO*L**4
S5*RHO*L**3
S*RHO*L**3
S*RHO*L**3
S*RHO*L**3

YAW HYDRODYNAMIC COEFFICIENTS

NPDOT
NRDOT
NPQ
NQR
NVDOT
NP

NR
NVQ
NWP
NWR
NV
NVW
NDRS
NDRB

=-3,
=-3.
=-2.
= 2.
= 1.

N I | I |}
~J

f
{
—

370E-05*0.
4C0E-03+*0.
117E-02*0.
750E-03*0.
240E-03*0.

.405E-04*0.
.640E-02%*0.
.990E-03%0.
.750E-02*0.
.350E-03*0.
.420E-03*0.
.670E-02*0.
.113E-02+0,
.113E-02*0.

DEFINE THE LENGTH X

b Sl i
WOIAARUTS™ W

o ow oo

-105.9/12.

-99.3/12.
-87.3/12.
-66.3/12.
72.7/12.
83.2/12.
81.2/12.
99.2/12.
103.2/12.

QOO0 OQOQOO00O

S*RHO*L**5
S*RHO*L**5
5*RHO*L**5
S*RHO*L**5
5*RHO*L**4
5*RHO*L**4
S*RHO*L**¢4
S*RHO*L**4
S*RHO*L**4
S*RHO*L**4
S*RHO*L**3
S*RHO*L**3
S*RHOXL**3
S*RHO*L**3

AND BREADTH BR TERNMS




Nnoon

00

BR(1l) = 0.00/12.0
BR(2) = 8.24/12.0
BR(3) = 19.76/12.0
BR(4) = 29.36/12.0
BR(5) = 31.85/12.0
BR(6) = 27.84,12.0
BR(7) = 21.44/12.0
BR(B) = 12.00/12.0
BR(9) = 0.00/12.0

COMPUTE AREA, CENTROID, AND MOMENT OF INERTIA

CALL TRAP(9,BR,X,AREA)

DO 9 I=1,9
VEC1(I)=X(I)*BR(1I)
VEC2(I)=X(I)*VEC1(I)

CONTINUE

CALL TRAP(9,VEC1,X,XAA)

XA=XAA/AREA

CALL TRAP(9,VEC2,X,I1a)

WRITE (*,1001)

READ (*,*) IRES
OPEN(31,NAME='COEF.DAT’,STATUS="OLD’')
READ.31,*) RATIO, DELB, XGB, ZGB, XB,
BUOY= WEIGHT + DELB

XG=XB+XGB

2G=ZB+%ZGB

MASS MATRIX COEFFICIENTS

B1(1,1)= MASS - XUDOT
B1(1,2)= 0.0

Bl(1,3)= MASS*ZG
B1(1,4)= 0.0

B1(2,1)= 0.0

B1(2,2)= MASS - ZWDOT
B1(2,3)=-(ZQDOT+MASS*XG)
B1(2,4)= 0.0

B1(3,1)= MASS*ZG
B1(3,2)=~(MWDOT+MASS*XG)
B1(3,3)= IY-MQDOT
B1(3,4)= 0.0

Bl1(4,1)= 0.0

Bl(4,2)= 0.0

B1(4,3)= 0.0

Bl(4,4)= 1.0
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B2(1,1)= IX-KPDOT
B2(1,2)= 0.0
B2(1,3)=-(KVDOT+MASS*ZG)
B2(1,4)=-KRDOT

B2(2,1)= 0.0

B2(2,2)= 1.0

B2(2,3)= 0.0

B2(2,4)= 0.0
B2(3,1)=-(YPDOT+MASS*ZG)
B2(3,2)= 0.0

B2(3,3)= MASS-YVDOT
B2(3,4)= MASS*XG-YRDOT
B2(4,1)=~NPDOT

B2(4,2)= 0.0

B2(4,3)= MASS*XG-NVDOT
B2(4,4)= 1Z-NRDOT

OPEN(41 ,NAME='DEOS.RES’,STATUS='NEW')
OPEN(42,NAME='DEOS1.RES',STATUS='NEW')
OPEN(43,NAME='DEOS2.RES’,STATUS='NEW')

IF (IRES.EQ.1) GO TO 1

IF (IRES.EQ.2) GO TO 2

IF (IRES.EQ.3) GO TO 3

IF (IRES.EQ.4) GO TO 4

OPEN (21,NAME='ST1.RES’,STATUS='0OLD’)
READ (21,*,END=100) DSD,THETO,U0,W0,WP
GO TO 5

OPEN (22,NAME='ST2.RES’,STATUS='0OLD')
READ (22,*,END=100) DSD,THETO,UO0,wW0,WP
GO TO 5

OPEN (23 ,NAME='ST3.RES’,STATUS='0OLD’)
READ (23,*,END=100) DSD,THETO,U0,W0,WP
GO TO 5

OPEN (24 ,NAME='ST4.RES’',STATUS='0OLD")
READ (24,*,END=100) DSD,THETO,UO0,W0,WP
GO TO 5

THETAO=THETO*PI/180.0
DS = DSD*PI/180.0
DB = DS * RATIO

DAMPING MATRIX COEFFICIENTS

1(1,1)=-2.0*U0*CDO+W0* (XWDS*DS+XWDB*DB)
+2.0*U0* (XDSDS*DS**2+XDBDB*DE**2)
Al(1,2)= 2,0*XWW*W0+UO0*(XWDS*DS+XWDB*DB)
( +3)= (XWQ-MASS}*WO+ (XQDS*DZ+XQDB*DB ) *U0
+4)=—(WEIGHT-BUOY)*DCOS{THETAQ)




)= ZW*W0+2.0*UO*(ZDS*DS+ZDB*DB)

)= ZW*U0-2.0*CDZ*AREA*DABS (W0)

)= (2Q+MASS)*U0+2.0*CDZ*AREA*XA*DABS(WO0)
)=~ (WEIGHT-BUOY)*DSIN(THETAQ)

[ SO NN

- . w o~

[ Gy
B W R

1)= MW*W0+2.0*U0* (MDS*DS+MDB*DB)
2)= MW*UO+2.0*CDZ*AREA*XA*DABS (WO0)
3)

4

PP PPy

=
—~ e
w W w

- . o™

= (MQ-MASS*XG)*UO-MASS*2G*W0
-2.0*xCDZ*IA*DABS(W0)

;4)= (XG*WEIGHT-XB*BUOY)*DSIN(THETAQ)-

& (ZG*WEIGHT-ZB*BUOY) *DCOS(THETA()

>
[
w

—~ o~ —~
B S
~ s~ s~
=W N
nnanea
o200
L A I
OO0

= KP*UO+(KWP-MASS*2G)*W0
=-(ZG*WEIGHT-ZB*BUOY)*DCOS(THETAQ)
= KV*UO+KVW*W0

= (KR+MASS*2G)*UO+KWR*W0

—~ o~ o~

LS SN SN N Lot el ol ol

- ™ w -

1.0
0.0
0.0
DTAN(THETAOQ)

PR
B W
~—
nennan

YP*UO+ ( YWP+MASS ) *W0

(WEIGHT-BUOY)*DCCS (THETAO)

= YV*UO+YVW*WO-CDZ*AREA*DABS (W0) .
= YWR*WO0+(YR-MASS)*UO-CDZ*AREA*XA

& *DABS (W0 )

PP BIBL HBPH BBPY

[SSN S S I (S NS O NN N NN Lol el e

o o~
wWwwww
- = o~ o~
WD
— -

= MASS*XG*WO+NP*UO+NWP*W0

= (XG*WEIGHT-XB*BUOY)*DCOS(THETAOQ)

= NV*UO+NVW*W0-CDZ*AREA*XA*DABS (W0)

= (NR-MASS*XG)*UO+NWR*W0~-CDZ*IA*DABS(WO0)

3 2
NN N

RESTORE B-MATRIX

0onn

DO 71 I=1,4
DO 72 J=1,4
BB1(1,J)=B1(I,J)
72 CONTINUE
71 CONTINUE

DO 81 1=1,4
DO 82 J=1,4
BB2(I,J)=B2(1,J) )
82 CONTINUE
81  CONTINUE




C

C

CALL RGG(4,4,A1,BBl,ALFR],ALFI1,BETA1,0,2221,1ER)
CALL DEGSTB(DEOS1,ALFRI1,ALFI1,BETAl,FREQ1,WR1,WI1l)
CALL RGG(4,4,A2,BB2,ALFR2,ALFI2,BETA2,0,2222,1ER)
CALL DEGSTB(DEOS2,ALFR2,ALFI2,BETA2,FREQ2,WR2,WI2)
IF (DEOS1.GE.DEOS2) DEOS=DEOS1
IF (DEOS1.LT.DEOS2) DEOS=DEOS2
WRITE (41,2001) DSD,THETO,UO0,W0,WP,DEOS,
& DEOS1,DEOS2 .
IF (DEOS.LT.0.DO0)
& WRITE (42,2001) DSD,THETO,U0,W0,WP,DEOS,
& DEOS1,DEOS2
IF (DEOS1.LT.0.D0)
& WRITE (43,2001) DSD,THETO,U0,W0,WP,DEOCS,
& DEOS1,DEOS2
IF (IRES.EQ.1) GO TO 11
IF (IRES.EQ.2) GO TO 12
IF (IRES.EQ.3) GO TO 13
IF (IRES.EQ.4) GO TO 14
100 sTOP
1001 FORMAT (' ENTER THE RESPONSE DATA FILE DESIRED
& (1,2,3, OR 4) ')

2001 FORMAT (BE15.5)
2002 FORMAT (F10.3)
END

SUBROUTINE DEGSTB(DEOS,ALFR,ALFI,BETA,OMEGA,WR,WI)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION ALFR(4),ALFI(4),BETA(4),WR(4),WI(4)
DO 1 I=1,4
WR(I)=ALFR(I)/BETA(I)
WI(I)=ALFI(I)/BETA(I)
1 CONTINUE
DEOS=-1.0E+10
DO 2 1I=1,4
IF (WR(I).LT.DEOS) GO TO 2
DEOS=WR(1I)
IJ=1
2 CONTINUE
OMEGA=WI(IJ)
OMEGA=DABS (OMEGA)
RETURN
END

SUBROUTINE TRAP(N,A,B,OUT)
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NUMERICAL INTEGRATION ROUTINE USING
THE TRAPEZOIDAL RULE

IMPLICIT DOUBLE PRECISION (A-H,0-2)

DIMENSION A(1),B(1)

Nl=N-1

ouT=0.0

DO 1 I=1,N1
OUT1=0.5*(A(I)+A(I+1))*(B(I+1)-B(I))
OUT =0UT+OUT1

CONTINUE

RETURN

END
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